

CX-1-03 CRYSTAL 8 MHz to 160 MHz

Miniature AT-Cut Quartz Crystal

Fundamental Mode: 8 MHz - 70 MHz Third Overtone Mode: 48 MHz - 160 MHz

DESCRIPTION

The CX-1 quartz crystal is a high quality miniature AT cut quality resonator. The CX-1 is hermetically sealed in a rugged, miniature ceramic package, one-fourth the size of an eight-pin mini-DIP. The CX-1 crystal is manufactured using the STATEK-developed photolithographic process, and was designed utilizing the experience acquired by producing millions of crystals for industrial, commercial, military and medical applications.

FEATURES

- Low-profile hermetically-sealed package
- Excellent aging characteristics
- Fundamental or 3rd overtone mode
- High shock resistance
- Full military testing available
- Designed and manufactured in the USA

PACKAGE HANDLING

The CX crystal is hermetically sealed in a ceramic package. Normal handling and soldering precautions for small, low thermal mass parts are adequate when installing or testing CX crystals. CX crystals may be wave soldered, with proper precaution taken to avoid desoldering the leads. A slow machine rate or too high a pre-heat temperature or solder bath temperature can damage the crystals. **Lead to package solder interface temperature should not exceed 175°C, glass lid to package seal rim temperature should not exceed 210°C.** If the seal rim reaches temperatures above the maximum specified, the package may lose its hermeticity resulting in degradation of crystal performance. Mishandling of CX crystals can cause cracking of the glass lid and loss of hermeticity.

PACKAGE DIMENSIONS

	TY	P.	MAX.	
DIM	INCHES	mm	INCHES	mm
А	.315	8.00	.330	8.38
В	.140	3.56	.155	3.94
С	.070	1.78	.080	2.03
D	.300	7.62	.310	7.87
Е	.020	0.51	.040	1.02
F	.150	3.81	.160	4.06

Leads 0.013" x 0.018" (0.33 x 0.46 mm) typical.

EQUIVALENT CIRCUIT

10127 - Rev D

SPECIFICATIONS

Specifications are typical at 25⁰C unless otherwise noted. Specifications are subject to change without notice.

	<u>10 MHz</u>	<u>32MHz</u>	<u>155.52 MHz</u>		
Motional Resistance R_1 (Ω)	50	20	50		
Motional Capacitance C ₁ (fF)	5.5	7.8	0.5		
Quality Factor Q (k)	80	36	41		
Shunt Capacitance C_0 (pF)	2.2	2.6	3.2		
Calibration Tolerance*	A ±0.01% (±100ppm)				
	B ±0.1%				
Load Capacitance	C ±1.0% 20 pF (Ur	iless speci	fied by customer)		
Drive Level	500 μW MAX.				
Frequency-Temperature	$-10^{\circ}C$ to $+70^{\circ}C$ from $\pm 10ppm$				
Stability	-40°C to +85°C from \pm 20ppm				
	-55°C to +125°C from ±30ppm				
Aging, first year	5ppm MA	Х.			
Shock, survival***	3,000g, .3	3 msec., ?	1/2 sine		
Vibration, survival	20g rms, 7	10-2,000	Hz random		
Operating Temperature Range	-10°C to + -40°C to + -55°C to +	-70°C C -85°C Ir -125°C N	commercial ndustrial Ailitary		
Storage Temperature	-55°C to +	-125°C			

Note: The characteristics of the frequency temperature stability follow that of AT cut thickness-shear mode*

* Tighter tolerances available as low as ± 5 ppm

 ** Does not include calibration tolerance

*** Higher shock version available, refer to data sheet model CX-1HG (10108)

PACKAGING

CX-1-03 - Tray Pack (Standard)

CIRCUIT DESIGN

A conventional CMOS Pierce Oscillator is shown below. The crystal oscillates at a frequency $f_{\rm O}$ above the crystal's series-resonant frequency $f_{\rm S}$. The crystal is effectively inductive and, in combination with RA, Cd and Cg in the feedback loop, provides approximately 180° phase shift necessary to obtain oscillation. Typical component values for a Pierce Oscillator using a 16 MHz crystal with a 74HCO4 hex inverter are shown below:

Typical Application as Pierce Oscillator Using 74HC04 CMOS Hex Inverter at 5 VDC

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

STANDARD FREQUENCIES

10.0	MHz	19.6608	MHz	32.0	MHz
11.0592	MHz	20.0	MHz	35.2512	MHz
12.0	MHz	24.0	MHz	36.0	MHz
14.318	MHz	24.576	MHz	40.0	MHz
16.0	MHz	30.0	MHz		

HOW TO ORDER CX-1-03 CRYSTALS

		03 <u>32 MHz</u>	(<u>25ppm</u> /	25ppm_ /	50ppm/)
"S" if special or custom design. Blank if Std. Blank=Fundamen Mode "Other calibration fill in ppm.	e C=Ceramic Lid al Blank=Glass Lid	Frequency	Calibration Tolerance* @25°C (A) (B) (C)	Frequency Stability over Temp. Range	Total Frequency Tolerance	Temp. Range: C = Commercial I = Industrial M = Military S = Specify

10127 - Rev D

