

CX-2 CRYSTAL 760 kHz to 1.35 MHz

Miniature Quartz Crystal

DESCRIPTION

The CX-2 quartz crystal is a high quality extensional mode resonator. The CX-2 is hermetically sealed in a rugged, miniature ceramic package, one-fourth the size of an eightpin mini-DIP. The CX-2 crystal is manufactured using the STATEK-developed photolithographic process, and was designed utilizing the experience acquired by producing millions of crystals for industrial, commercial, military and medical applications.

FEATURES

- Extensional mode
- Ideal for use with microprocessors
- Designed for low power applications
- Compatible with hybrid or PC board packaging
- Low aging
- Full military testing available
- Ideal for battery operated applications
- Designed and manufactured in the USA

PACKAGE HANDLING

The CX crystal is hermetically sealed in a ceramic package. Normal handling and soldering precautions for small, low thermal mass parts are adequate when installing or testing CX crystals. CX crystals may be wave soldered, with proper precaution taken to avoid desoldering the leads. A slow machine rate or too high a pre-heat temperature or solder bath temperature can damage the crystals. Lead to package solder interface temperature should not exceed 175°C, glass lid to package seal rim temperature should not exceed 210°C. If the seal rim reaches temperatures above the maximum specified, the package may lose its hermeticity. Loss of hermeticity results in a frequency decrease and motional resistance increase.

EQUIVALENT CIRCUIT

PACKAGE DIMENSIONS

Notes:

- 1. Terminal 1 is electrically connected internally to terminal 3.
- 2. Lead dimensions Width: .013" (.33mm) Typical Thickness: .007" (.18mm) Typical
- 3.A = Glass Lid .080 (2.03) max. Ceramic Lid .095 (2.41) max.

-.260 (6.60)

2

10139 - Rev C

71SC (900

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Frequency Range	<u>760 kHz - 1.35 MHz</u>
Functional Mode	Extensional
Calibration Tolerance*	A ± 0.05% (± 500ppm) B ± 0.1% C ± 1.0%
Load Capacitance	7 pF
Motional Resistance (R1)	5 k Ω MAX
Motional Capacitance (C1)	1.2fF
Quality Factor (Q)	150 k
Shunt Capacitance (C ₀)	1.0 pF
Drive Level	3 μW MAX.
Turning Point (T _O)**	35°C
Temperature Coefficient (k)	-0.035 ppm/°C ²

Note: Frequency (f) deviation from frequency (f_0) @ turning

point temperature (T _O);	$\frac{f-f_O}{f_O} = k(T-T_O)^2$
Aging, first year	5ppm MAX.
Shock	1000g peak, 0.3 msec.,1/2 sine
Vibration, survival	10g rms, 20-1,000 Hz random
Operating Temperature	-10°C to +70°CCommercial-40°C to +85°CIndustrial-55°C to +125°CMilitary
Storage Temperature	-55°C to +125°C
Max Process Temperature	See package handling

* Tighter frequency calibration available.

** Other turning point available.

HOW TO ORDER CX-2-LEADED CRYSTALS

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The low profile CX miniature leaded crystal is ideal for small, high density, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PI-network circuit with C_D and C_G provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_O) is 15 to 150 ppm above the crystal's series resonant frequency (f_S).

Drive Level

 R_{A} is used to limit the crystal's drive level by forming a voltage divider between R_{A} and $\mathsf{C}_{\mathsf{D}}.$ R_{A} also stabilizes the oscillator against changes in the amplifiers output resistance (R_{0}). R_{A} should be increased for higher voltage operation.

Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_1). C_1 is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
 (1)

NOTE: C_D and C_G include stray layout to ground and C_s is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C_L will be less than that calculated from C_D , C_G and C_S values because of the effect of the amplifier output resistance. C_S should be minimized.

The oscillation frequency (f_0) is approximately equal to:

$$f_{O} = f_{S} \left[1 + \frac{C_{1}}{2(C_{0} + C_{L})} \right]$$
(2)

Where f_{S} = Series resonant frequency of the crystal

 \tilde{C}_1 = Motional Capacitance

 $C_0 =$ Shunt Capacitance

10139 - Rev C

