

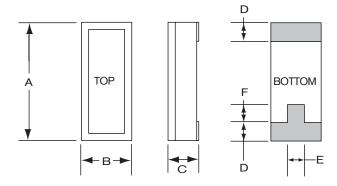
CX4VSM CRYSTAL

30 kHz to 250 kHz Ultra-Miniature Low Profile Surface Mount Quartz Crystal

DESCRIPTION

STATEK's ultra-miniature CX4VSM quartz crystals are hermetically sealed in surface mount ceramic packages and custom laser-tuned to frequencies ranging from 30 kHz to 250 kHz. This high quality tuning fork resonator is intended for use in Pierce (single inverter) oscillators with a maximum process temperature not to exceed 260°C.

FEATURES

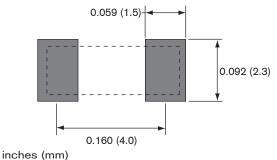

- Ultra-miniature, surface mount design
- Available with glass or ceramic lid
- Hermetically sealed ceramic package
- Quartz crystal tuning fork design
- High shock and vibration survival
- Excellent aging characteristics
- Designed for low power applications
- Full military testing available
- Designed and manufactured in the USA

APPLICATIONS

- Medical Implantable and Non-Implantable Devices
- Military Devices
- Smart Card
- Transponder / Animal Migration
- Space Limited Devices
- Handheld Battery Operated Devices
- Down Hole / Industrial Instrumentation
- Computer / Computer Peripherals

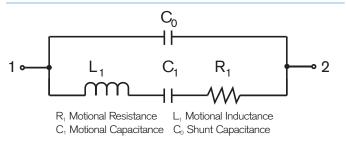
Glass Lid Shown

PACKAGE DIMENSIONS



	TY	P.	MA	λX.	
DIM	inches	mm	inches	mm	
Α	0.197	5.00	0.210	5.33	
В	0.072	1.83	0.085	2.16	
С	-	-	see b	elow	
D	0.036	0.91	0.046	1.16	
Е	0.020	0.51	-	_	
F	0.025	0.64	-	-	

THICKNESS (DIM C)


Lid	Termination		Maximum
		inches	mm
Ceramic	SM1	0.050	1.27
	SM2/SM4	0.051	1.30
	SM3/SM5	0.053	1.35
Glass	SM1	0.045	1.14
	SM2/SM4	0.046	1.17
	SM3/SM5	0.048	1.22

SUGGESTED LAND PATTERN

10103 - Rev E

EQUIVALENT CIRCUIT

SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Parameters	Fundar	nental	Overtone
Frequency, (kHz)	32.768	100	200
Motional Resistance $R_1(k\Omega)$	50	18	2.4
Motional Capacitance C ₁ (fF)	2.3	1.07	2.2
Quality Factor Q (k)	40	85	140
Shunt Capacitance C ₀ (pF)	1.1	0.7	1.2
Load Capacitance (pF) ¹	9	8	5
Turning Point (°C)1	25	10	29

Standard Calibration Tolerance for 32.768 kHz²

Glass Lid:	± 30 ppm	± 100 ppm	± 1000 ppm
	(0.003%)	(0.01%)	(0.1%)
Ceramic Lid:	± 100 ppm	± 1000 ppm	± 10000 ppm
	(0.01%)	(0.1%)	(1.0%)

 $0.5 \mu W MAX$ Drive Level

Temperature Coefficient (k) -0.035 ppm/°C²

Note: Frequency f at temperature T is related to frequency f₀ at Note: Frequency 1 at 22. turning point temperature T_0 by: $\frac{f-f_0}{f_0} = k(T-T_0)^2$

Aging, first year 3 ppm

Shock, survival³ 5,000 g, 0.3 ms, 1/2 sine

20 g RMS, 10-2,000 Hz random Vibration, survival

-10°C to +70°C (Commercial) Operating Temp. Range

-40°C to +85°C (Industrial) -55° C to $+125^{\circ}$ C (Military)

Storage Temp. Range -55°C to +125°C

260°C for 20 sec. Max Process Temperature

1. Other values available

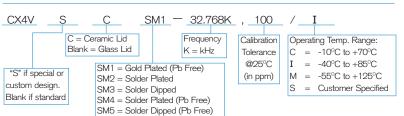
2. Tighter tolerances available

3. Higher shock available

TERMINATIONS

<u>Designation</u>	<u>Termination</u>
SM1	Gold Plated
SM2	Solder Plated
SM3	Solder Dipped
SM4	Solder Plated (

Solder Plated (Pb Free) **SIVI4** SM₅ Solder Dipped (Pb Free)


PACKAGING OPTIONS

CX4VSM - Tray Pack

- 16mm tape, 7" or 13" reels

(Reference tape and reel data sheet 10109)

HOW TO ORDER CX4VSM CRYSTALS

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The CX4 family of surface mount crystals are ideal for small, high density, battery operated portable products. The CX4 crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a Plnetwork circuit with C_{D} and C_{G} provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_0) is 50 to 150 ppm above the crystal's series resonant frequency (f_s).

Drive Level

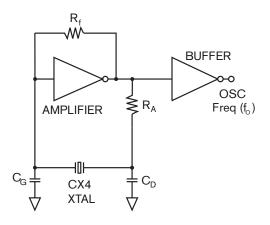
R_A is used to limit the crystal's drive level by forming a voltage divider between R_A and C_D. R_A also stabilizes the oscillator against changes in the amplifiers output resistance (R₀). R_A should be increased for higher voltage operation.

Load Capacitance

The CX4 crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_L). C_L is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
 (1)

NOTE: C_D and C_G include stray layout to ground and C_S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C_{L} will be less than that calculated from CD, CG and CS values because of the effect of the amplifier output resistance. C_S should be minimized.


The oscillation frequency (f_0) is approximately equal to:

$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_1)} \right]$$
 (2)

 f_S = Series resonant frequency of the crystal

C₁ = Motional Capacitance C₀ = Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

10103 - Rev E

