

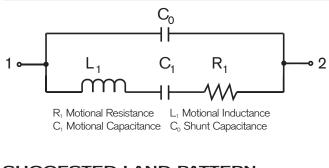
CX6SM CRYSTAL

D

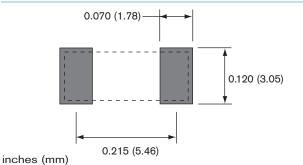
800 kHz to 1.35 MHz Ultra-Low Profile (1mm) Miniature Surface Mount Quartz Crystal

DESCRIPTION

The CX6SM quartz crystals are leadless devices designed for surface mounting on printed circuit boards or hybrid substrates. They are hermetically sealed in a rugged, miniature ceramic package. They are manufactured using the STATEK-developed photolithographic process, and are designed utilizing the experience acquired by producing millions of crystals for industrial, commercial, military and medical applications. Maximum process temperature should not exceed 260°C.


actual size

PACKAGE DIMENSIONS


FEATURES

- Ultra-low profile (1mm)
- Extensional mode
- Ideal for use with microprocessors
- Designed for low power applications
- Low aging
- Full military testing available
- Ideal for battery operated applications
- Designed and manufactured in the USA

EQUIVALENT CIRCUIT

SUGGESTED LAND PATTERN

A 	ТОР		BOTTOM
<u>♥</u> -		 D	
	TYP.	М	AX.

	TY	′P.	MA	AX.
DIM	inches	mm	inches	mm
А	0.265	6.73	0.280	7.11
В	0.103	2.62	0.114	2.90
С	-	-	see b	elow
D	0.050	1.27	0.060	1.52
DIM "C"	GLASS LID		CERAMIC LID	
MAX	inches	mm	inches	mm
SM1	0.039	0.99	0.053	1.35
SM2/SM4	0.041	1.04	0.055	1.40
SM3/SM5	0.044	1.12	0.058	1.47

10133 - Rev C

SPECIFICATIONS

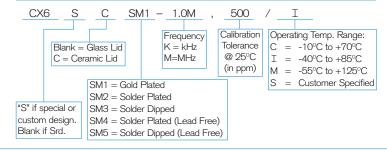
Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

Frequency Range	<u>800 kHz - 1.35 MHz</u>		
Functional Mode	Extensional		
Calibration Tolerance ¹	± 500 ppm (0.05%)		
	± 1000 ppm (0.1%)		
	± 10000 ppm (1.0%)		
Load Capacitance	$7~\mathrm{pF}$ (Unless specified by customer)		
Motional Resistance (R1)	5 kΩ MAX		
Motional Capacitance (C1)	1.2fF		
Quality Factor (Q)	150 k		
Shunt Capacitance (C ₀)	1.0 pF		
Drive Level	3 μW MAX		
Turning Point (T ₀) ²	35°C		
Temperature Coefficient (k)	-0.035 ppm/°C²		
Aging, first year	5 ppm MAX		
Shock, survival	1,000 g, 0.3 ms,1/2 sine		
Vibration, survival	10 g RMS, 20-1,000 Hz random		
Operating Temp. Range	$-10^{\circ}C$ to $+70^{\circ}C$ (Commercial)		
	-40°C to +85°C (Industrial)		
o. – –	-55° C to $+125^{\circ}$ C (Military)		
Storage Temp. Range	-55°C to +125°C		
Max Process Temperature	260°C for 20 sec.		

Note: Frequency f at temperature T is related to frequency f_0 at turning point temperature T_0 by: $\underline{f_0} = k(T-T_0)^2$

Tighter tolerances available.
Other values available.

PACKAGING


CX6SM - Tray Pack

- Tape and Reel
 - (Reference tape and reel data sheet 10109)

TERMINATIONS

Designation	<u>Termination</u>
SM1	Gold Plated
SM2	Solder Plated
SM3	Solder Dipped
SM4	Solder Plated (Lead Free)
SM5	Solder Dipped (Lead Free)

HOW TO ORDER CX6SM CRYSTALS

TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The low profile CX miniature surface mount crystal is ideal for small, high density, battery operated portable products. The CX crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PI-network circuit with C_D and C_G provides the additional phase shift necessary to sustain oscillation. The oscillation frequency (f_0) is 15 to 150 ppm above the crystal's series resonant frequency (f_S).

Drive Level

 R_A is used to limit the crystal's drive level by forming a voltage divider between R_A and $C_D.\ R_A$ also stabilizes the oscillator against changes in the amplifiers output resistance (R_0). R_A should be increased for higher voltage operation.

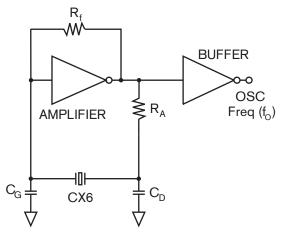
Load Capacitance

The CX crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance (C_L). C_L is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
(1)

NOTE: C_D and C_G include stray layout to ground and C_S is the stray shunt capacitance between the crystal terminal. In practice, the effective value of C_L will be less than that calculated from C_D , C_G and C_S values because of the effect of the amplifier output resistance. C_S should be minimized.

The oscillation frequency (f_0) is approximately equal to:


$$f_0 = f_S \left[1 + \frac{C_1}{2(C_0 + C_L)} \right] \quad (2)$$

Where

 f_S = Series resonant frequency of the crystal C_1 = Motional Capacitance

 $C_0 =$ Shunt Capacitance

CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT

10133 - Rev C

