

# CX9VSM CRYSTAL

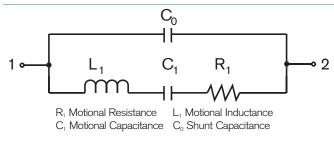
32 kHz to 250 kHz

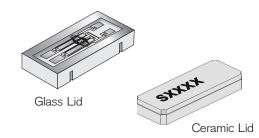
Ultra-Miniature, Low Profile Surface Mount Quartz Crystal

#### DESCRIPTION

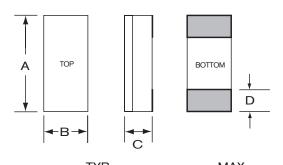
Designed and manufactured in the USA, the CX9V quartz crystal is available in frequencies from 32 kHz to 250 kHz. Using micro-machining processes, this surface-mountable crystal is hermetically sealed within a ultra-miniature ceramic package to ensure high stability and low aging. Tight calibration and custom laser tuning make the CX9V ideally suited for all low frequency applications.

#### FEATURES


- Ultra-miniature, surface mount design (4.1mm x 1.5mm)
- Low profile (typically 0.80mm)
- Available with glass or ceramic lid
- Hermetically sealed ceramic package
- High shock and vibration survival
- Excellent aging characteristics
- Designed for low power applications
- Full military testing available
- Designed and manufactured in the USA


#### APPLICATIONS

Medical

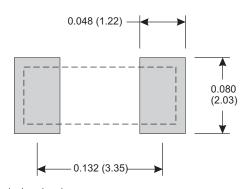

- Pacemaker, defibrillator, and other implantables
- Medical instruments
- Industrial, Computer, & Communications
  - Smart card
  - Down hole instrumentation
  - Transponder / Animal migration
  - Process instrumentation
- Military & Aerospace
  - Airborne hybrid
  - Navigational computer
  - Real time clock

## EQUIVALENT CIRCUIT





## PACKAGE DIMENSIONS




|     | IY     | Έ.   | IM/    | <b>ЧΧ.</b> |  |
|-----|--------|------|--------|------------|--|
| DIM | inches | mm   | inches | mm         |  |
| А   | 0.160  | 4.10 | 0.170  | 4.32       |  |
| В   | 0.060  | 1.50 | 0.068  | 1.73       |  |
| С   | -      | -    | see b  | elow       |  |
| D   | 0.031  | 0.79 | 0.038  | 0.97       |  |
|     |        |      |        |            |  |

#### THICKNESS (DIM C) MAXIMUM

|         | GLAS   | S LID | CERAM  | C LID |  |
|---------|--------|-------|--------|-------|--|
| MAX     | inches | mm    | inches | mm    |  |
| SM1     | 0.034  | 0.87  | 0.035  | 0.90  |  |
| SM2/SM4 | 0.034  | 0.87  | 0.035  | 0.90  |  |
| SM3/SM5 | 0.036  | 0.91  | 0.037  | 0.94  |  |

#### SUGGESTED LAND PATTERN



inches (mm)



10157 - Rev D

## SPECIFICATIONS

Specifications are typical at 25°C unless otherwise noted. Specifications are subject to change without notice.

| Parameters                               | Fundamental |      | Overtone |     |
|------------------------------------------|-------------|------|----------|-----|
| Frequency, (kHz)                         | 32.768      | 100  | 180      | 240 |
| Motional Resistance $R_1(k\Omega)$       | 60          | 19   | 5        | 4   |
| Motional Capacitance C <sub>1</sub> (fF) | 2.2         | 1.0  | 2.0      | 1.5 |
| Quality Factor Q (k)                     | 37          | 80   | 90       | 110 |
| Shunt Capacitance C <sub>0</sub> (pF)    | 1.0         | 0.85 | 1.0      | 0.9 |
| Load Capacitance (pF) <sup>1</sup>       | 9           | 9    | 9        | 9   |
| Turning Point (°C)                       | 20          | 16   | 20       | 25  |

Standard Calibration Tolerance for 32.768 kHz<sup>2</sup>

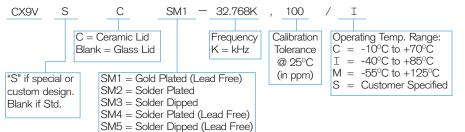
| Glass Lid:   | ± 30 ppm  | ± 100 ppm  | ± 1000 ppm  |
|--------------|-----------|------------|-------------|
|              | (0.003%)  | (0.01%)    | (0.1%)      |
| Ceramic Lid: | ± 100 ppm | ± 1000 ppm | ± 10000 ppm |
|              | (0.01%)   | (0.1%)     | (1.0%)      |

Drive Level

0.5 μW MAX

Temperature Coefficient (k) -0.035 ppm/°C<sup>2</sup>

Note: Frequency f at temperature T is related to frequency  $f_0$  at turning point temperature  $T_0$  by:  $\frac{f-f_0}{f} = k(T-T_0)^2$ 


|                                                                                  | 10                                                                                       |  |  |
|----------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--|--|
| Aging, first year                                                                | 3 ppm                                                                                    |  |  |
| Shock, survival <sup>3</sup>                                                     | 5,000 g, 0.3 ms, 1/2 sine                                                                |  |  |
| Vibration, survival                                                              | 20 g RMS, 10-2,000 Hz random                                                             |  |  |
| Operating Temp. Range                                                            | -10°C to +70°C (Commercial)<br>-40°C to +85°C (Industrial)<br>-55°C to +125°C (Military) |  |  |
| Storage Temp. Range                                                              | -55°C to +125°C                                                                          |  |  |
| Max Process Temperature                                                          | 260°C for 20 sec.                                                                        |  |  |
| <ol> <li>Other values available</li> <li>Tighter tolerances available</li> </ol> | 3. Higher shock available                                                                |  |  |

# TERMINATIONS

| <u>Designation</u> | Termination               |
|--------------------|---------------------------|
| SM1                | Gold Plated (Lead Free)   |
| SM2                | Solder Plated             |
| SM3                | Solder Dipped             |
| SM4                | Solder Plated (Lead Free) |
| SM5                | Solder Dipped (Lead Free) |

Max Process Temperature 260°C for 20 sec.

# HOW TO ORDER CX9VSM CRYSTALS



#### TYPICAL APPLICATION FOR A PIERCE OSCILLATOR

The CX9 family of surface mount crystals are ideal for small, high density, battery operated portable products. The CX9 crystal designed in a Pierce oscillator (single inverter) circuit provides very low current consumption and high stability. A conventional CMOS Pierce oscillator circuit is shown below. The crystal is effectively inductive and in a PI-network circuit with  $C_D$  and  $C_G$  provides the additional phase shift necessary to sustain oscillation. The oscillation frequency ( $f_0$ ) is 50 to 150 ppm above the crystal's series resonant frequency ( $f_S$ ).

#### **Drive Level**

 $\mathsf{R}_A$  is used to limit the crystal's drive level by forming a voltage divider between  $\mathsf{R}_A$  and  $\mathsf{C}_D.$   $\mathsf{R}_A$  also stabilizes the oscillator against changes in the amplifiers output resistance ( $\mathsf{R}_0$ ).  $\mathsf{R}_A$  should be increased for higher voltage operation.

## Load Capacitance

The CX9 crystal calibration tolerance is influenced by the effective circuit capacitances, specified as the load capacitance ( $C_L$ ).  $C_L$  is approximately equal to:

$$C_{L} = \frac{C_{D} \times C_{G}}{C_{D} + C_{G}} + C_{S}$$
(1)

NOTE:  $C_D$  and  $C_G$  include stray layout to ground and  $C_S$  is the stray shunt capacitance between the crystal terminal. In practice, the effective value of  $C_L$  will be less than that calculated from  $C_D$ ,  $C_G$  and  $C_S$  values because of the effect of the amplifier output resistance.  $C_S$  should be minimized.

The oscillation frequency  $(f_0)$  is approximately equal to:


$$f_0 = f_S \left[ 1 + \frac{C_1}{2(C_0 + C_L)} \right] \quad (2)$$

Where  $f_{S}$  = Series resonant frequency of the crystal

 $C_1$  = Motional Capacitance

C<sub>0</sub> = Shunt Capacitance

#### CONVENTIONAL CMOS PIERCE OSCILLATOR CIRCUIT



PACKAGING OPTIONS

Tray Pack or 16mm tape, 7" or 13" reels (Reference tape and reel data sheet 10109)

10157 - Rev D

